光学边缘计算机的特点
ChatGPT 等人工智能的应用正在快速地改变我们的生活方式和信息处理的方法。由于神经网络深度学习依赖于大规模矩阵运算,对计算能量效率和速度有极高的要求。目前大部分神经网络的计算都是在服务器进行。例如,当我们向 ChatGPT(或者智能家电)提出问题时,设备需要几秒钟的时间才能做出响应。出现这种延迟的原因之一是联网设备没有足够的内存或电量来存储和运行设备理解用户要求所需的庞大机器学习模型。该模型存储在可能位于数千公里外的数据中心,在那里计算答案并将其发送到设备。该延时虽不大,但限制了很多需要实时反馈的场景,如自动驾驶。
麻省理工学院的研究团队基于集成硅光芯片,创造了一种直接在这些设备上进行计算的新方法(光学边缘计算),从而大大减少了这种延迟。他们的技术将运行机器学习模型的内存密集型步骤转移到中央服务器,在中央服务器上模型的组件被编码到光波上。使用光纤将波传输到连接的设备,这使得大量数据能够通过网络以光带宽(2.4TB/s)发送。然后接收器使用一个简单的光学设备,该设备使用这些光波携带的模型部分快速执行计算。
与其他方法相比,该技术可将能源效率提高一百倍以上。它还可以提高安全性,因为用户的数据不需要传输到中央位置进行计算。这种方法可以使自动驾驶汽车实时做出决策,同时仅使用耗电计算机当前所需能量的 1%。它还可以让用户与他们的智能家居设备进行无延迟对话,用于通过蜂窝网络进行实时视频处理,甚至可以在距离地球数百万英里的航天器上实现高速图像分类。
“每次你想运行一个神经网络,你都必须调用模型,你能以多快的速度运行这个程序取决于你能以多快的速度从内存中输入模型。我们的管道很大——相当于每毫秒左右通过互联网发送一部完整的电影。这就是数据进入我们系统的速度。而且它的计算速度也可以这么快,” MIT 团队负责人教授德克·英格伦 (Dirk Englund) 说。
边缘计算是近年来人工智能芯片领域的热门方向之一。这种运算模式把神经网络运行在智能终端处理器比如智能手机、自动驾驶汽车上,通过实现去中心化计算,可以大大增加用户信息的安全性,同时减少数据中心的计算量,缩小数据处理的延时等。